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Phenomenological modeling of the compaction dynamics of shaken granular systems
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Granular systems such as powder or sand can compact because of shaking. Using a phenomenological decay
law for the successive inverse packing fractions, we obtain the relaxation dynamics for the packing fraction
recently found in the experiment by Knighkt al. [Phys. Rev. B51, 3957 (1995] and discuss the physical
implications as well as the physical origin of the proposed decay[@h063-651X96)11608-1

PACS numbeps): 46.10+2z, 05.40+j, 81.05.Rm

I. INTRODUCTION The parameterB and 7, as well as the initial and the final
packing fractionp, (slightly larger than the loose-packed
During the last decade, there has been an awakening difmit) and p., (denotedp; in [4]), can be extrapolated from
interest in the structural and dynamical behavior of granulathe experimen{4]. As also shown by Knighet al. [4], B,
systemgsuch as powder or dry sandmong physicist§1]. 7, and p,, depend strongly on the applied shaking intensity
Granular systems are complex classical many-particle syd-. The functional form(1) given by the authors without
tems; their complexity results from the fact that the grainstheoretical motivation4] seems to be imcompatible with
are finitely extended, can have complicated shapes, only irprevious theoretical approaches on the compaction problem
teract through friction and inelastic collision, and compact[5,6].
due to gravity. Although many properties of granular sys- Compaction due to shaking is a property that does not
tems such as heaping, avalanching, vibration-induced corappear in solids or Newtonian fluids and therefore, standard
vection, and size segregatiph] are part of our daily expe- approaches using the equation of state fail. This is because
rience, the physics behind these phenomena is just beginninganular systems show dynamical features that belong to the
to be understood. Another effect of wide practical applica-almost unexplored field of compressible viscoplastic “flu-
tions in engineering and technology is the compaction oids” [7].
granular systemf2-6]. As an example, if you try to refill a In this paper, we establish a possible scenario for the dy-
pound of coffee powder in a jar made for a pound of coffeenamics of granular compaction on a phenomenological level.
powder, you will usually figure out that this is not an easyWe propose and provide reasons for a decay law for the
task. While refilling, the coffee powder increases its volumesuccessive inverse packing fractions from shake to shake. Its
and further compaction requires vertical shaking of the jarsolution yields a time evolution of the packing fractipp
(with a closed lid. So far, compaction seems to be folklore: which is — from the physicists point of view — equivalent
A static granular system can exist in a range of metastableéo Eq.(1). Moreover, we explore the physics behind the co-
states between the so-called loose- and close-packed limitsfficentsB and 7 in Eq. (1). Finally, we describe a simple
Shaking can compact the system. The question of how fasime-continuous model for the decompaction-recompaction
the compaction happens, however, is a highly nontrivialprocess during each shake that is based on viscoplastic argu-
problem[2-6]. ments, in order to understand the physical origin of the pro-
In a recent important work, Knighet al. [3,4] have ex- posed decay law.
plored the dynamics of the compaction process using well-

determined experimental conditions: monodisperse spherical Il. THEORETICAL APPROACH

glass particles in a long thin vertical tube under the influence

of a large number of vertical periodic shakéypically A. Order parameter and stroboscopic decay law

10%) with a controlled shaking intensity (determined by By bypassing, for the moment, the microscopic details of

the ratio of the peak intensity of a shake and the gravitationahe decompaction and recompaction process that occur dur-
acceleration Above a critical valuel'c=1, a peculiar dy- ing each shake, we focus on finding the stroboscopic (oap
namics for the successive compaction process from shake tfe difference equatiorthat governs the dynamics leading to
shake happens. For k8°<5, Knightet al.[3,4] found that  Eq. (1). As a convenient order parameter for the dynamic

the most satisfactory fit of their data for the time dependenc@acking problem we introduce tl@mpaction ratio
of (ensemble-averagg@acking fractionp, at rest after suc-

cessive shakesn=1,2,3 ..., has thdunctional form Pn~ P @
o= s
" po—p=
P=""Po 1) which is the difference of the packing fractipp at rest after

Pn=P="77 Bin(1+n/7)" the shaken from its closed-packed limip., reduced by its
initial difference and, therefore, it is axperimentally mea-
surablequantity. Note thafi) using «,, instead ofp,, allows

*Electronic address: linz@physik.uni-augsburg.de us to eliminate the fitting parameteys; and p.,, from the
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subsequent discussiofii,) «/, is positive semidefinite for all B. Exact solution of Eg. (5)

n, (iii) the initial compaction ratiar, equals unity, andiv) Equation(5) can be solved recursively by taking advan-
ay approaches zero in the limit—c. Therefore, the initial age of the properties of harmonic serj€s9]. The result is
packing fraction and the close-packed limit of a granulary,e following.

system correspond to compaction ratios unity or zero, re- Proposition: Supposing the stroboscopic decay 145)

spectively. The question that will be addressed is the mechgyg|4s for periodic shaking witi€ and » positive, the com-
nism that leads to the empirical formula of Knight al. paction ratioa,, after thenth shake reads

[3.4].
Staying within the framework of discrete dynamical sys- 1
tems, the structure of a one-dimensional stroboscopic map a“:l+Cv[\If(n+1+ D —W(1t )]’ (6)

that can lead to the compaction dynamics is

n=0,1,2 ..., with ¥(x) denoting the digamma function
an_q [8,9] defined as the logarithmic derivative of the gamma
an="F(an-1,n) =31 —— (3 function.
nn-1 Proof: In order to derive Eq(6), we use the fact that the
process starts at the initial reciprocal compaction ratio

with a coefficienth,>0, which can be time dependent. 1/, =1 at timen=0, and obtain using standard summation
Equation(3) fullfils the limits a¢p=1 anda..=0 as well as  methods of calculus

the decay to zero ih, is bounded from above. The limit

h,=0 for all n corresponds to the solid limit without any 1 1 Cy N1

compaction taking placeg,=apo=1 for all n. Supposing —= + m =1+Cvz KT

that h,, equals a constant beingindependenbf n leads to an G-y ATV k=1 KTV

an algebraic decayy,=1/(1+cn). Therefore, to obtain a =1 o 1

slower decay as found by Kniglet al. [3,4], h,, in Eq. (3) =1+Cv| >, -

has to be time dependent and decay weakening. This implies ksiktr Erktntw

that h, must decrease in time. As one can show, a purely P 1 1 % 1 1

algebraic decayh,~ 1/n, is not adequate to reproduce Eg. =1+Co| D> | —— _) _ - _”

(1). An ansatz oh,, however, that allows for different de- =1 \ktv k] & kEntr K

cays for short and long times, 1 CU[W(1+ ) =W (n+1+D)]. )

_ C In the last line of Eq(7), we have introduced the digamma

h“_1+ n/v’ (4) function ¥ (x), which possesses the series expang&n

is the simplest appropriate form bf, that can reproduce the W(x)=— 2 L — L —y (8)

empirical result, Eq(1), as we show below. Here, the pa- k=0 \k+x k+1

rameterC and the characteristic decay timedo not depend ) ) _

on the timen, but can depend — at least in general — on theWith y=0.57721. .. denoting the Euler-Mascheroni con-

vibration intensityl" of the shaking process and on structuralStant. Expressing Ed7) in terms of, yields Eq.(6).

properties of a granular system such as grain size, grain ma- Several remarks are in ordef) Equation(6) represents

terial, grain shape, etc. One immediately infers tBaand  the unique solution of the decay lai), and therefore, also

» must be positive in order to guarantee an increase of thie unique solution of the nonlinear mag) and (4). (ii)

packing fractionp,, in time. a,, only depends omw, the product oC_ andwv, an_d_the shake
The nonlinear, nonautonomous mé3) for the compac- numbern. In order to have compact|0|j at all, it is necessary

tion ratio a, with h, from (4) can be transformed into a thatC andv are both nonzero; otherwise,= a=1 for all

linear nonautonomous map for the inverse compaction ratid- (iii) SinceW(x) —o asx—o, a., equals zero(iv) Since
la,, W(x) is a monotonically increasing function for>0, a),

decreases monotonically to zerfy) For timesn being
large in comparison to tv, the denominator of(6)
=~ n=123.... (5) increases logarithmically in  time to infinity,
@y ap-1 l+nly l/a,~In(n)+1-¥(1+v)+0O(1/n;v/n). This implies that for
large timesn, the compaction ratiay,, approaches zero as
The stroboscopic decay lavEg. (5), is our central model for  1/(CvInn), being very slow in comparison to an algebraic or
the compaction process. It allows a simple phenomenologi€xponential decay in timelvi) The bracketed term on the
cal interpretation of the dynamics of the packing procesgight-hand side of Eq. (7) can be written as
generated byeriodic shaking: The difference of sucessive ==, ¥ (l,1+v)n" with ¥ (I,x)=(d'/dx')¥(x) denoting the
reciprocal compaction ratios deca§slinearly in timen for ~ polygamma functions. For short times/(1+v)<1, one
times that are short in comparison to a characteristic decagbtains a,=1[1+Cv»¥(1,1+»)n] with »¥(1,1+v)=1
time, and(ii) proportional to the inverse of time,rl,/in the  for »>0. This implies a linear decrease af, with n for
long time limit. Finally, Eq.(5) also allows easily an experi- short times.(vii) The solution(6) also holds for negativ€
mental verification. and/orv. C<0 andv>0, however, leads to a slow increase

1 1



54 PHENOMENOLOGICAL MODELING OF THE COMPACTIM . . . 2927

of a, with n with a divergence at a time when the denomi- 1

nator in(6) approaches zero. If the nondivergent initial part (a) /‘/
of this solution is also applicable to the shake-to-shake de- R 1 )

compaction, behavior seen for very lardfe[10] remains

(due to the lack of quantitative measurememisen. 0.998¢

C. Equivalence with the experimental result?

At first glance, it is not obvious that E¢6) reproduces 0.996%
the experimental result of Knightt al. [3,4]. In order to
compare Eq(6) with Eqg. (1), we rewrite(6) in terms of the
packing fractionp,, using EQ.(2), pn=p-t (po— Px)¥n,
and obtain 0.9941

10 20 30 40 50
n

Po™ P
=p,+ . 9
PP 1 Cy[¥(n+1+v)-W(1+v)] © FIG. 1. RatioR, Eq.(11), as a function of time=1-50 for(a)
v=1.3 and(b) »=10 000.

Since the digamma functio (x) diverges toe asx—oo,

pn in (9) reproduces the limitp, and p,, for n=0 and B=Cy. (13
n—oo, respectively. We need to show that the relaxation for

the packing fraction, Eq(9), reproduces the extrapolation SinceC andv are positive in our theonB as well asr are
formula of Knightet al. [3,4]. Using the asymptotics of the also positive in accordance with the experimental findings
digamma function for largen and matching that with the [4].

initial value, one obtains for the second term in the denomi- To summarize Secs. Il A-Il C, we conclude that the dy-

nator of Eq.(9) namics of the packing fraction, Eq9), derived from the
stroboscopic decay lawb), is — from the physicist's point
Y(n+1+v)—VY(1+v) of view— equivalent to the empirical formula of Knight

et al.[3,4] for the relevant ranges of the parameteiThis in

1 v turn is a strong indication for the validity of the stroboscopic
=Inn—=¥(1+»)+0| -~ decay law(5) for the compaction process.
1
—In[nexg — ¥ (1+»)}]+0 ﬁ; ﬁ) D. Role of the decay rater and the parameter C

So far, our theoretical approach does not specify any de-
1 v pendence on the shaking intenslty it is hidden in the pa-
—;—), (10 rametersC and v. From their experimental data, Knight
et al.[4] have determined the dependence & &md Inras a
function of the vibration intensity’ in the range KI'<5.
They found that both quantities decay rapidly from very
large valueB~0(10%) and 7~0O(10°) atI'=1 to compa-

n
1+ —
Cc

=In +0

nn

where the characteristic relaxation timeg is given by
n.=expW(1+v)}. Although Eq.(10) is only an asymptotic
result(that, as a matter of fact, also fulfills time=0 limit), a rably small values8=10"* and ~1.8 atT'=3. For larger
numerical comparison of the left- and right-hand sides of Eqr (at least up td" ~5), B and r are basically c;onstant For
(10) shows a very high accuracy for the relevant paramete{he - values relevant in the Knighet al. experimenl{4],- ,

ranges of the decay rate (cf. the discussion in Sec. II)D . L
even for short times. In Fig. 1, we plot the ratio can be approximated with high accuracy by

W(n+ 1+ 1)~ W(1+p) T=vt 3 (14
= (11

In(1+n/n¢) since an expansion of E(L2) in terms of 14 yields a rap-
idly converging series,

for (a) »=1.3 and(b) »=10* andn=1-50.R determines

the relative size of the correctio®(1/n;v/n) in Eq. (10) in _ 1 1 1 23 17 1
comparison to unity. As one can see from Fig. 1, thereisno 7= ** 5% 52~ 28,2 " 57603 T 3820 T ©\ 5
difference from zero within the linewidth for the small decay (15)

rate v=1.3; for the large decay rate=10%, the maximum
error (for n=1) is only about half of a percent. Insertion of Even for the smallest value found in the experimen#],
Eg. (10) into Eqg.(9) shows that Eq(9) possesses basically 7=1.8, one obtains from Eq14) »=1.3, which is in good
the same functional structure as the extrapolation of Knighagreement with the exact resuwit 1.28. Therefore, we con-
et al.[3,4], Eqg. (). This allows us to relate the coefficients clude that the characteristic decay timeof successive re-
C andv in Eq. (5) to the coefficient8 and r measured by ciprocal compaction ratios in E) is basically proportional
Knight et al. [3,4], yielding to the relaxation timer of the packing fraction. Also the
magnitude of the paramet&=B/v in Eqg. (5) can be esti-
r=n.=exp(¥(1+v)}, (12 mated based on the results of Knigdttal. [4]; the result is
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that C is typically a quantity of order 10* for the whole 1f
range of relevant vibration intensities, £8<5.

A further interesting result can be obtained by relating the
coefficientsB and 7 of Knight et al. [4]. Combining Egs.
(12), (13), and (14), leads to a relation betweenBnand
InT:

1
1+

=InB+In 5

1
v+ =

InT=In
2

C

d
=|. (16)

In Fig. 5 of their paper, Knighet al. [4] show the depen-
dence of I8 and Inr on the vibration intensity’. Using their
data for I'>=1.8, we suspect that a relationship
In7=InB+InK (or 7=KB) with K=18 being independent of
the vibration intensityl’, is compatible with their experi- _
ment. From a comparison with E¢L6), one can then con- FIG. 2. Dependence af, on the timen, Eq.(7). The curve(a)

jecture that the parametér and the decay rate are related with »=10 000 andC=0.056 corresponds to a vibration intensity
I'=1.8, the curveb) with »=1.3 andC=0.077 toI'=4. These

0 200 400 600 800 1000

b X .
y values forC andv are extrapolations from the experimental results
1 1 for B and 7 in Ref. [4].
C=r |1t 5] 17) o . : .
K 2v This implies(i) a fast relaxation of the compaction ratio de-

) ) caying linearly withn for short times andii) a slow 1/lm
with K being a constant that can depend on structural proprgjaxation for longer times. The crossover between these two
e_rt|e§ of thg granular system, butinglependenof the vibra-  {jme ranges occurs typically at abowty~O(0.1). Conse-
tion intensityI". In particular for large enough decay rates gyently, for values o of unit order(or vibration intensities
v, C=1/K, implying thatC is also practically independent of T |arger than 3), the crossover happens immediately at the
the vibration intensity. o _ ~ beginning and the relaxation dynamics shows basically the
Below the threshold shaking intensity,=1 successive 1/inn behavior. For largev (vibration intensities close to
compaction does not take place, and the granular system b?-zz), the crossover occurs at times of the ordef 1®
haves like a solid body. This results from the viscoplasticig® and both relaxation dynamics can be observed. In Fig. 2,
yield of the granular system and is reflected in Es).by @ \ye demonstrate this effect by showing the time evolution of
sudden jump oi and/orC to zero forl'<I'c. the compaction ratiar,, Eq. (6), for a large and a small
vibration intensityl’. These interpretations seem to be com-

E. Physical implications of Eq.(5) patible with the experimental data of Knigat al. [4].
Based on the experimental findings of Kniggttal. [3,4] _ o _
and our model, we can offermacroscopidnterpretation of F. Physical origin of the stroboscopic law, Eq(5)

the compaction dynamics under periodic shaking. Between sg far, we have shown that the stroboscopic decay law,
the random loose-packed limit or an initial packing fraction Eq. (5), leads to the compaction dynamics found by Knight
po (Or ap=1) slightly larger than the loose-packed limit and et a|.[3,4]. But what is the physical origin of E¢5) and, in

the random close-packed limit. (or a.,=0), a periodically  particular, where does the inhomogeneity in E). or Eq.
shaken granular system with a large enough grain size tg5) come from? Let us now sketch a simple, qualitative, ex-
system size ratio goes through an infinite sequence of metartly solvable model that is based on viscoplastic arguments
stable packing states or compaction ratigsuntil the maxi-  [11] and mimics the decompaction and recompaction pro-
mum compacted state=0 has been reached. Starting with cesses that occur from shake to shake. As a starting point, we

ap=1, the decay of the compaction ratio due to periodicintroduce the time-continuous version of the compaction ra-
shaking happens—at least in principle—on two distinct timetio, given by

regimes with different decay behavior reflecting the two con-
tributions in Eq.(5), the linear decrease im for short times p(t)— pw
and the 1 decrease for long times. For short timesy a(t)= Po—po |
<1, the decay law (5) can be approximated by
lay,—1la,_1=C(1—n/v), leading to a short-time compac- which is positive and can reach values larger than unity dur-
tion dynamics ing the decompaction-compaction process. Next, we make
some simplifying assumptioné) the changes of the packing
ay~1-Cn, n/v<1l, (18)  fraction during decompaction and recompaction are basically
o ) ~ homogeneous along the height of the systéim; there is
being independent of at this order, whereas the long-time negligible friction at the side walls, ar{di) there is no liftoff
dynamics is governed by of the grains at the bottom of the container while decompact-
ing [12]. Using the first assumption, that(t) is basically
proportional to the rescaled and nondimensionalized height
of the granular system, one can model its dynamics using

(20

a 1
" Cvlnn

n/v>1. (19
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Newton’s equation. In the following, all quantities are con-suddenly present and slows down further recompaction.

sidered to be nondimensionalized by appropriately choseKnowing the map(3), the form of the potentiaV/,, can be

length and time scales. determined. The result can be summarized as follows.
Suppose the granular system is at rest after the X)th Proposition: Suppose that the decompaction and recom-

shake and possesses a compaction @tio;. At timet=n paction proces§) obeys the model Eq$21), (22), and(23)

the nth shake occurs. Viscoplastic yield requires that decomand (ii) is driven from rest,a,_,, by periodic shaking,

paction from rest only occurs if the shake intensity over-v,=a(t=n)=v>v,, for anyn. If the potentialV,(a) pos-

comes a certain value. In the experimpti the excitation of  sesses the structure

decompaction has a complicated pulse profile. This can be

mimicked by a decompaction ratg,= «(n), which is the 0 ifa>an 4
initial condition that starts thath decompaction process and Vo (a)= 1 (24)
overcomes a yield decompaction ratg= a.>0. Since the —kgatf,— if asayq,

grains are not elastically coupled, there is no restoring force

except the downwards acting gravity. Therefore, the decomwith k>0 and f,>0 being a shake-dependent coefficient,
paction procesfa(t)>0] can be modeled by the nezxt compacted rest statg is given by the may$3) with

. o h,=v4/2f,.

a=-kg0(vy—ve) if a>0, (22) Proof: First note that Eq(22) has a first integral,
with ®(x) denoting the Heaviside functiog>0 being the L 42+ kga+V,(a)=const. (25)
nondimensionalized gravity constant, aadbeing a positive
multiplicative constant. Ifv,>v., the system decompacts One can take advantage @25 by using that at time
according toa(t)= — (1/2)kg(t—n)?+v,(t—n)+a,_ 1 un-  t,=n+2v/kg, a(t,)=a,_, anda(t,)=—v hold, and that
til  the maximum decompaction amaxzvﬁIZkg the next rest state determines. Inserting this into Eq(24)
+a,_1>a,_1 has been reached at time=n-+uv,/kg. yields
Then, the recompaction procesg(t) <0] driven by gravity
begins. To obtain a saturation of the recompaction at a finite 102+f 1 —f i (26)
positive value ofw, an additional counteracting “force” that 2 "a,_1 "ap
can be derived from a potentid,(«) is reasonable. The )
physics of the problem suggests that the poteMijgly) acts ~ ©F» equivalently,
as a compaction barrier wittf,(«—0)—cc as the ultimate 1 1 02
limit for compaction (corresponding to the closed-packed R =—
limit), and that the potentidf,(«) depends explicitly on the an ap-y 2f,
shake number or the history of the compaction proces
(“memory effect”). This is becaus&,(«) originates from
the internal resistance of the granular network against furthelrat
compaction and this network changes and compacts frorgf‘

(27)

f:omparing Eq(27) with Eq. (3) proves the proposition.

Note that the right-hand side G27) is determined by the

io of the initial condition of thenth shake,v=a(n),
hich is a constant for periodic shaking, and the inverse of

e

shake to shake. Therefore, the recompaction process can > shake-dependent steepnissf the potentiaV(a). By

modeled by comparison with Eq(5), one obtains
a=—kg—d,V,(a) if a<0O (22 02 N
and fnzi 1+; , (28
a=0 if «=0. (23)  which implies that the steepness of the compaction barrier

increases linearly from shake to shake for a hjin- com-

Given an appropriate potentidl, as discussed above, Eq. paction dynamics as observed in the experiment, Réf.
(22 can be solved with the initial conditions The potentialV,, in Eq. (24) consists of two parts: The
a(t=n+v,/kg)=amxanda(t=n+v,/kg)=0. The result  first term being linear inx compensates gravitational recom-
is a decrease of(t) that eventually reaches=0 in finite  paction whereas the second term accounts for the compac-
time, then the recompaction stops. This new rest state defingi®n barrier. The latter diverges proportionally toaland
the compaction ratiar,. Due to the viscoplastic yield con- depends explicitly on the shake intensity= «(n) and the
dition, the granular system stays at rest until the next suffishake numben through the potential steepnefs. Both
ciently strong shake occuf&3]. dependences are not surprising; shake intensity and shake

So far, our considerations apply to periodic shaking pronumber influence directly the successive packing behavior of
cesses where,, is the same for alh, as well as to nonperi- the granular system. Therefore, the shake dependentg of
odic shaking processes whesg can differ from shake to and also the inhomogeneity of the mé®) reflect the intrin-
shake. What, however, is a good candidate for the potentiadic compaction behavior of the shaken granular material. The
V,, that leads to the ma38)? As in the case of decompaction, arbitrariness off, in the potentialV,(«) can also lead to
one can assume the recompaction is basically driven by thether types of compaction dynamics by choosing different
gravational term—kg until the compaction ratio of the pre- shake dependence &f. In this context, it seems to be in-
vious compacted rest stai,_;, has been reached again, soteresting if any granular systerteven ultrafine powder
that V(> a,_1)=0. At «(t)=«a,_4, the potentialV,, is  shows a 1/Inf) compaction dynamics.
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No quantitative experimental results on the dynamics ofor towards maximum compactiory=0, happens on two
the decompaction and recompaction process are available iime scales. Finally, we have proposed a simple nonlinear
the literature yet. Therefore, the qualitative model proposeanodel for the dynamics from shake to shake that is based on
above is speculative. Nevertheless, we think that it capturegiscoplastic ideas and leads to the stroboscopic (Bap
essential features of the process. Improving the model by The structural simplicity of the mag3) might indicate
taking into account collision effects of grains as well as non-that it is universal in the sense that it holds for any type of
homogeneous corrections to the height dependence of tlgranular systen{ultrafine and fine powders, granules, and
packing fraction require a microscopic approach based on thepheres as in the experimgdf). It remains an open ques-
kinetic theory of inelastic many particle systems that is betion whether all types of granular systems have the same

yond the scope of this study. h,, Eq.(4), or the same shake dependence of the compaction
barrierV,, as discussed in Sec. Il F implying a logarithmic
[l. DISCUSSION AND CONCLUSION decay of the compaction ratio. We hope that our theory

] ) ] stimulates experiments that check the validity of our basic
Introducing the compaction ratie as an order parameter, assumption, Eq(5), as well as detailed experimental studies
we have given reasons for the conjecture that the nonautgsy the decompaction and recompaction process. For a recent

nomous mag3) might be an appropriate phenomenological gjterative approach to the compaction problem, we refer to
description of the stroboscopic compaction dynamics ofzef, [14].

granular systems as studied 814]. We have shown that this
map with the special nhonautonomous tehmagiven in Eq.
(4) or, equivalently, the stroboscopic decay &by, leads to
the empirical result of Knighet al. [3,4] for the successive The author thanks K. Swalin for helpful comments on the
compaction of the packing fraction. Based on E5), we  manuscript and H. Jaeger for useful discussions on the com-
have argued that — at least in principle — the decay behawpaction experiments.
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