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Granular systems such as powder or sand can compact because of shaking. Using a phenomenological decay
law for the successive inverse packing fractions, we obtain the relaxation dynamics for the packing fraction
recently found in the experiment by Knightet al. @Phys. Rev. E51, 3957 ~1995!# and discuss the physical
implications as well as the physical origin of the proposed decay law.@S1063-651X~96!11608-1#
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I. INTRODUCTION

During the last decade, there has been an awakening of
interest in the structural and dynamical behavior of granular
systems~such as powder or dry sand! among physicists@1#.
Granular systems are complex classical many-particle sys-
tems; their complexity results from the fact that the grains
are finitely extended, can have complicated shapes, only in-
teract through friction and inelastic collision, and compact
due to gravity. Although many properties of granular sys-
tems such as heaping, avalanching, vibration-induced con-
vection, and size segregation@1# are part of our daily expe-
rience, the physics behind these phenomena is just beginning
to be understood. Another effect of wide practical applica-
tions in engineering and technology is the compaction of
granular systems@2–6#. As an example, if you try to refill a
pound of coffee powder in a jar made for a pound of coffee
powder, you will usually figure out that this is not an easy
task. While refilling, the coffee powder increases its volume
and further compaction requires vertical shaking of the jar
~with a closed lid!. So far, compaction seems to be folklore:
A static granular system can exist in a range of metastable
states between the so-called loose- and close-packed limits.
Shaking can compact the system. The question of how fast
the compaction happens, however, is a highly nontrivial
problem@2–6#.

In a recent important work, Knightet al. @3,4# have ex-
plored the dynamics of the compaction process using well-
determined experimental conditions: monodisperse spherical
glass particles in a long thin vertical tube under the influence
of a large number of vertical periodic shakes~typically
104) with a controlled shaking intensityG ~determined by
the ratio of the peak intensity of a shake and the gravitational
acceleration!. Above a critical valueGc.1, a peculiar dy-
namics for the successive compaction process from shake to
shake happens. For 1.8,G,5, Knightet al. @3,4# found that
the most satisfactory fit of their data for the time dependence
of ~ensemble-averaged! packing fractionrn at rest after suc-
cessive shakes,n51,2,3, . . . , has thefunctional form

rn5r`2
r`2r0

11Bln~11n/t!
. ~1!

The parametersB andt, as well as the initial and the final
packing fractionr0 ~slightly larger than the loose-packed
limit ! andr` ~denotedr f in @4#!, can be extrapolated from
the experiment@4#. As also shown by Knightet al. @4#, B,
t, andr` depend strongly on the applied shaking intensity
G. The functional form~1! given by the authors without
theoretical motivation@4# seems to be imcompatible with
previous theoretical approaches on the compaction problem
@5,6#.

Compaction due to shaking is a property that does not
appear in solids or Newtonian fluids and therefore, standard
approaches using the equation of state fail. This is because
granular systems show dynamical features that belong to the
almost unexplored field of compressible viscoplastic ‘‘flu-
ids’’ @7#.

In this paper, we establish a possible scenario for the dy-
namics of granular compaction on a phenomenological level.
We propose and provide reasons for a decay law for the
successive inverse packing fractions from shake to shake. Its
solution yields a time evolution of the packing fractionrn
which is — from the physicists point of view — equivalent
to Eq. ~1!. Moreover, we explore the physics behind the co-
efficentsB and t in Eq. ~1!. Finally, we describe a simple
time-continuous model for the decompaction-recompaction
process during each shake that is based on viscoplastic argu-
ments, in order to understand the physical origin of the pro-
posed decay law.

II. THEORETICAL APPROACH

A. Order parameter and stroboscopic decay law

By bypassing, for the moment, the microscopic details of
the decompaction and recompaction process that occur dur-
ing each shake, we focus on finding the stroboscopic map~or
the difference equation! that governs the dynamics leading to
Eq. ~1!. As a convenient order parameter for the dynamic
packing problem we introduce thecompaction ratio

an5
rn2r`

r02r`
, ~2!

which is the difference of the packing fractionrn at rest after
the shaken from its closed-packed limitr` reduced by its
initial difference and, therefore, it is anexperimentally mea-
surablequantity. Note that~i! usingan instead ofrn allows
us to eliminate the fitting parameters,r0 and r` , from the*Electronic address: linz@physik.uni-augsburg.de
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subsequent discussion,~ii ! an is positive semidefinite for all
n, ~iii ! the initial compaction ratioa0 equals unity, and~iv!
an approaches zero in the limitn→`. Therefore, the initial
packing fraction and the close-packed limit of a granular
system correspond to compaction ratios unity or zero, re-
spectively. The question that will be addressed is the mecha-
nism that leads to the empirical formula of Knightet al.
@3,4#.

Staying within the framework of discrete dynamical sys-
tems, the structure of a one-dimensional stroboscopic map
that can lead to the compaction dynamics is

an5 f ~an21 ,n!5
an21

11hnan21
~3!

with a coefficient hn.0, which can be time dependent.
Equation~3! fullfils the limits a051 anda`50 as well as
the decay to zero ifhn is bounded from above. The limit
hn50 for all n corresponds to the solid limit without any
compaction taking place,an5a051 for all n. Supposing
that hn equals a constantc being independentof n leads to
an algebraic decay,an51/(11cn). Therefore, to obtain a
slower decay as found by Knightet al. @3,4#, hn in Eq. ~3!
has to be time dependent and decay weakening. This implies
that hn must decrease in time. As one can show, a purely
algebraic decay,hn;1/n, is not adequate to reproduce Eq.
~1!. An ansatz ofhn , however, that allows for different de-
cays for short and long times,

hn5
C

11n/n
, ~4!

is the simplest appropriate form ofhn that can reproduce the
empirical result, Eq.~1!, as we show below. Here, the pa-
rameterC and the characteristic decay timen do not depend
on the timen, but can depend — at least in general — on the
vibration intensityG of the shaking process and on structural
properties of a granular system such as grain size, grain ma-
terial, grain shape, etc. One immediately infers thatC and
n must be positive in order to guarantee an increase of the
packing fractionrn in time.

The nonlinear, nonautonomous map~3! for the compac-
tion ratio an with hn from ~4! can be transformed into a
linear nonautonomous map for the inverse compaction ratio
1/an ,

1

an
2

1

an21
5

C

11n/n
, n51,2,3, . . . . ~5!

Thestroboscopic decay law, Eq. ~5!, is our central model for
the compaction process. It allows a simple phenomenologi-
cal interpretation of the dynamics of the packing process
generated byperiodic shaking: The difference of sucessive
reciprocal compaction ratios decays~i! linearly in timen for
times that are short in comparison to a characteristic decay
time, and~ii ! proportional to the inverse of time, 1/n, in the
long time limit. Finally, Eq.~5! also allows easily an experi-
mental verification.

B. Exact solution of Eq. „5…

Equation~5! can be solved recursively by taking advan-
tage of the properties of harmonic series@8,9#. The result is
the following.

Proposition: Supposing the stroboscopic decay law~5!
holds for periodic shaking withC andn positive, the com-
paction ratioan after thenth shake reads

an5
1

11Cn@C~n111n!2C~11n!#
, ~6!

n50,1,2, . . . ,̀ , with C(x) denoting the digamma function
@8,9# defined as the logarithmic derivative of the gamma
function.

Proof: In order to derive Eq.~6!, we use the fact that the
process starts at the initial reciprocal compaction ratio
1/a0[1 at timen50, and obtain using standard summation
methods of calculus

1

an
5

1

an21
1

Cn

n1n
511Cn(

k51

n
1

k1n

511CnS (
k51

`
1

k1n
2 (

k51

`
1

k1n1n D
511CnF (

k51

` S 1

k1n
2
1

kD 2 (
k51

` S 1

k1n1n
2
1

kD G
512Cn@C~11n!2C~n111n!#. ~7!

In the last line of Eq.~7!, we have introduced the digamma
functionC(x), which possesses the series expansion@8#

C~x!52 (
k50

` S 1

k1x
2

1

k11D2g ~8!

with g50.57721, . . . denoting the Euler-Mascheroni con-
stant. Expressing Eq.~7! in terms ofan yields Eq.~6!.

Several remarks are in order.~i! Equation~6! represents
the unique solution of the decay law~5!, and therefore, also
the unique solution of the nonlinear map~3! and ~4!. ~ii !
an only depends onn, the product ofC andn, and the shake
numbern. In order to have compaction at all, it is necessary
thatC andn are both nonzero; otherwise,an5a051 for all
n. ~iii ! SinceC(x)→` asx→`, a` equals zero.~iv! Since
C(x) is a monotonically increasing function forx.0, an
decreases monotonically to zero.~v! For times n being
large in comparison to 11n, the denominator of~6!
increases logarithmically in time to infinity,
1/an; ln(n)112C(11n)1O(1/n;n/n). This implies that for
large timesn, the compaction ratioan approaches zero as
1/(Cn lnn), being very slow in comparison to an algebraic or
exponential decay in time.~vi! The bracketed term on the
right-hand side of Eq. ~7! can be written as
( l51

` C( l ,11n)nl with C( l ,x)5(dl /dxl)C(x) denoting the
polygamma functions. For short times,n/(11n)!1, one
obtains an.1/@11CnC(1,11n)n# with nC(1,11n).1
for n.0. This implies a linear decrease ofan with n for
short times.~vii ! The solution~6! also holds for negativeC
and/orn. C,0 andn.0, however, leads to a slow increase
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of an with n with a divergence at a timen when the denomi-
nator in ~6! approaches zero. If the nondivergent initial part
of this solution is also applicable to the shake-to-shake de-
compaction, behavior seen for very largeG @10# remains
~due to the lack of quantitative measurements! open.

C. Equivalence with the experimental result?

At first glance, it is not obvious that Eq.~6! reproduces
the experimental result of Knightet al. @3,4#. In order to
compare Eq.~6! with Eq. ~1!, we rewrite~6! in terms of the
packing fractionrn using Eq. ~2!, rn5r`1(r02r`)an ,
and obtain

rn5r`1
r02r`

11Cn@C~n111n!2C~11n!#
. ~9!

Since the digamma functionC(x) diverges to` as x→`,
rn in ~9! reproduces the limitsr0 and r` for n50 and
n→`, respectively. We need to show that the relaxation for
the packing fraction, Eq.~9!, reproduces the extrapolation
formula of Knightet al. @3,4#. Using the asymptotics of the
digamma function for largen and matching that with the
initial value, one obtains for the second term in the denomi-
nator of Eq.~9!

C~n111n!2C~11n!

5 lnn2C~11n!1OS 1n ; n

nD
5 ln@nexp$2C~11n!%#1OS 1n ; n

nD
5 lnF11

n

nc
G1OS 1n ; n

nD , ~10!

where the characteristic relaxation timenc is given by
nc5exp$C(11n)%. Although Eq.~10! is only an asymptotic
result~that, as a matter of fact, also fulfills then50 limit!, a
numerical comparison of the left- and right-hand sides of Eq.
~10! shows a very high accuracy for the relevant parameter
ranges of the decay raten ~cf. the discussion in Sec. II D!
even for short times. In Fig. 1, we plot the ratio

R5
C~n111n!2C~11n!

ln~11n/nc!
~11!

for ~a! n51.3 and~b! n5104 andn51–50.R determines
the relative size of the correctionsO(1/n;n/n) in Eq. ~10! in
comparison to unity. As one can see from Fig. 1, there is no
difference from zero within the linewidth for the small decay
raten51.3; for the large decay rate,n5104, the maximum
error ~for n51) is only about half of a percent. Insertion of
Eq. ~10! into Eq. ~9! shows that Eq.~9! possesses basically
the same functional structure as the extrapolation of Knight
et al. @3,4#, Eq. ~1!. This allows us to relate the coefficients
C andn in Eq. ~5! to the coefficientsB andt measured by
Knight et al. @3,4#, yielding

t5nc5exp$C~11n!%, ~12!

B5Cn. ~13!

SinceC andn are positive in our theory,B as well ast are
also positive in accordance with the experimental findings
@4#.

To summarize Secs. II A–II C, we conclude that the dy-
namics of the packing fraction, Eq.~9!, derived from the
stroboscopic decay law~5!, is — from the physicist’s point
of view— equivalent to the empirical formula of Knight
et al. @3,4# for the relevant ranges of the parametern. This in
turn is a strong indication for the validity of the stroboscopic
decay law~5! for the compaction process.

D. Role of the decay raten and the parameterC

So far, our theoretical approach does not specify any de-
pendence on the shaking intensityG; it is hidden in the pa-
rametersC and n. From their experimental data, Knight
et al. @4# have determined the dependence of lnB and lnt as a
function of the vibration intensityG in the range 1,G,5.
They found that both quantities decay rapidly from very
large valuesB;O(103) andt;O(105) at G.1 to compa-
rably small valuesB.1021 andt.1.8 atG.3. For larger
G ~at least up toG.5), B andt are basically constant. For
the t values relevant in the Knightet al. experiment@4#, t
can be approximated with high accuracy by

t.n1 1
2 ~14!

since an expansion of Eq.~12! in terms of 1/n yields a rap-
idly converging series,

t5n1
1

2
1

1

24n
2

1

48n2
1

23

5760n3
1

17

3840n4
1OS 1n5D .

~15!

Even for the smallestt value found in the experiment@4#,
t.1.8, one obtains from Eq.~14! n51.3, which is in good
agreement with the exact resultn51.28. Therefore, we con-
clude that the characteristic decay timen of successive re-
ciprocal compaction ratios in Eq.~5! is basically proportional
to the relaxation timet of the packing fraction. Also the
magnitude of the parameterC5B/n in Eq. ~5! can be esti-
mated based on the results of Knightet al. @4#; the result is

FIG. 1. RatioR, Eq. ~11!, as a function of timen51–50 for~a!
n51.3 and~b! n510 000.
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that C is typically a quantity of order 1022 for the whole
range of relevant vibration intensities, 1.8,G,5.

A further interesting result can be obtained by relating the
coefficientsB and t of Knight et al. @4#. Combining Eqs.
~12!, ~13!, and ~14!, leads to a relation between lnB and
lnt:

lnt. lnS n1
1

2D5 lnB1 lnF S 11
1

2n D 1CG . ~16!

In Fig. 5 of their paper, Knightet al. @4# show the depen-
dence of lnB and lnt on the vibration intensityG. Using their
data for G>1.8, we suspect that a relationship
lnt5lnB1lnK ~or t5KB) with K.18 being independent of
the vibration intensityG, is compatible with their experi-
ment. From a comparison with Eq.~16!, one can then con-
jecture that the parameterC and the decay raten are related
by

C5
1

K S 11
1

2n D , ~17!

with K being a constant that can depend on structural prop-
erties of the granular system, but isindependentof the vibra-
tion intensityG. In particular for large enough decay rates
n, C.1/K, implying thatC is also practically independent of
the vibration intensity.

Below the threshold shaking intensityGc.1 successive
compaction does not take place, and the granular system be-
haves like a solid body. This results from the viscoplastic
yield of the granular system and is reflected in Eq.~5! by a
sudden jump ofn and/orC to zero forG<Gc .

E. Physical implications of Eq.„5…

Based on the experimental findings of Knightet al. @3,4#
and our model, we can offer amacroscopicinterpretation of
the compaction dynamics under periodic shaking. Between
the random loose-packed limit or an initial packing fraction
r0 ~or a051) slightly larger than the loose-packed limit and
the random close-packed limitr` ~or a`50), a periodically
shaken granular system with a large enough grain size to
system size ratio goes through an infinite sequence of meta-
stable packing states or compaction ratiosan until the maxi-
mum compacted statea50 has been reached. Starting with
a051, the decay of the compaction ratio due to periodic
shaking happens—at least in principle—on two distinct time
regimes with different decay behavior reflecting the two con-
tributions in Eq.~5!, the linear decrease inn for short times
and the 1/n decrease for long times. For short timesn/n
!1, the decay law ~5! can be approximated by
1/an21/an21.C(12n/n), leading to a short-time compac-
tion dynamics

an;12Cn, n/n!1, ~18!

being independent ofn at this order, whereas the long-time
dynamics is governed by

an;
1

Cn lnn
, n/n@1. ~19!

This implies~i! a fast relaxation of the compaction ratio de-
caying linearly withn for short times and~ii ! a slow 1/lnn
relaxation for longer times. The crossover between these two
time ranges occurs typically at aboutn/n;O(0.1). Conse-
quently, for values ofn of unit order~or vibration intensities
G larger than 3), the crossover happens immediately at the
beginning and the relaxation dynamics shows basically the
1/lnn behavior. For largen ~vibration intensities close to
G.2), the crossover occurs at times of the order 102 to
103 and both relaxation dynamics can be observed. In Fig. 2,
we demonstrate this effect by showing the time evolution of
the compaction ratioan , Eq. ~6!, for a large and a small
vibration intensityG. These interpretations seem to be com-
patible with the experimental data of Knightet al. @4#.

F. Physical origin of the stroboscopic law, Eq.„5…

So far, we have shown that the stroboscopic decay law,
Eq. ~5!, leads to the compaction dynamics found by Knight
et al. @3,4#. But what is the physical origin of Eq.~5! and, in
particular, where does the inhomogeneity in Eq.~3! or Eq.
~5! come from? Let us now sketch a simple, qualitative, ex-
actly solvable model that is based on viscoplastic arguments
@11# and mimics the decompaction and recompaction pro-
cesses that occur from shake to shake. As a starting point, we
introduce the time-continuous version of the compaction ra-
tio, given by

a~ t !5
r~ t !2r`

r02r`
, ~20!

which is positive and can reach values larger than unity dur-
ing the decompaction-compaction process. Next, we make
some simplifying assumptions:~i! the changes of the packing
fraction during decompaction and recompaction are basically
homogeneous along the height of the system;~ii ! there is
negligible friction at the side walls, and~iii ! there is no liftoff
of the grains at the bottom of the container while decompact-
ing @12#. Using the first assumption, thata(t) is basically
proportional to the rescaled and nondimensionalized height
of the granular system, one can model its dynamics using

FIG. 2. Dependence ofan on the timen, Eq. ~7!. The curve~a!
with n510 000 andC50.056 corresponds to a vibration intensity
G51.8, the curve~b! with n51.3 andC50.077 toG54. These
values forC andn are extrapolations from the experimental results
for B andt in Ref. @4#.
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Newton’s equation. In the following, all quantities are con-
sidered to be nondimensionalized by appropriately chosen
length and time scales.

Suppose the granular system is at rest after the (n21)th
shake and possesses a compaction ratioan21. At time t5n
thenth shake occurs. Viscoplastic yield requires that decom-
paction from rest only occurs if the shake intensity over-
comes a certain value. In the experiment@4#, the excitation of
decompaction has a complicated pulse profile. This can be
mimicked by a decompaction ratevn5ȧ(n), which is the
initial condition that starts thenth decompaction process and
overcomes a yield decompaction ratevc5ȧc.0. Since the
grains are not elastically coupled, there is no restoring force
except the downwards acting gravity. Therefore, the decom-
paction process@ȧ(t).0# can be modeled by

ä52kgQ~vn2vc! if ȧ.0, ~21!

with Q(x) denoting the Heaviside function,g.0 being the
nondimensionalized gravity constant, andk being a positive
multiplicative constant. Ifvn.vc , the system decompacts
according toa(t)52(1/2)kg(t2n)21vn(t2n)1an21 un-
til the maximum decompaction amax5vn

2/2kg
1an21.an21 has been reached at timet5n1vn /kg.
Then, the recompaction process@ȧ(t),0# driven by gravity
begins. To obtain a saturation of the recompaction at a finite
positive value ofa, an additional counteracting ‘‘force’’ that
can be derived from a potentialVn(a) is reasonable. The
physics of the problem suggests that the potentialVn(a) acts
as a compaction barrier withVn(a→0)→` as the ultimate
limit for compaction ~corresponding to the closed-packed
limit !, and that the potentialVn(a) depends explicitly on the
shake number or the history of the compaction process
~‘‘memory effect’’!. This is becauseVn(a) originates from
the internal resistance of the granular network against further
compaction and this network changes and compacts from
shake to shake. Therefore, the recompaction process can be
modeled by

ä52kg2]aVn~a! if ȧ,0 ~22!

and

ä50 if ȧ50. ~23!

Given an appropriate potentialVn as discussed above, Eq.
~22! can be solved with the initial conditions
a(t5n1vn /kg)5amaxandȧ(t5n1vn /kg)50. The result
is a decrease ofa(t) that eventually reachesȧ50 in finite
time, then the recompaction stops. This new rest state defines
the compaction ratioan . Due to the viscoplastic yield con-
dition, the granular system stays at rest until the next suffi-
ciently strong shake occurs@13#.

So far, our considerations apply to periodic shaking pro-
cesses wherevn is the same for alln, as well as to nonperi-
odic shaking processes wherevn can differ from shake to
shake. What, however, is a good candidate for the potential
Vn that leads to the map~3!? As in the case of decompaction,
one can assume the recompaction is basically driven by the
gravational term2kg until the compaction ratio of the pre-
vious compacted rest state,an21, has been reached again, so
that Vn(a.an21)50. At a(t)5an21, the potentialVn is

suddenly present and slows down further recompaction.
Knowing the map~3!, the form of the potentialVn can be
determined. The result can be summarized as follows.

Proposition:Suppose that the decompaction and recom-
paction process~i! obeys the model Eqs.~21!, ~22!, and~23!
and ~ii ! is driven from rest,an21, by periodic shaking,
vn5ȧ(t5n)5v.vc , for anyn. If the potentialVn(a) pos-
sesses the structure

Vn~a!5H 0 if a.an21

2kga1 f n
1

a
if a<an21 ,

~24!

with k.0 and f n.0 being a shake-dependent coefficient,
the next compacted rest statean is given by the map~3! with
hn5v2/2f n .

Proof: First note that Eq.~22! has a first integral,

1
2 ȧ21kga1Vn~a!5const. ~25!

One can take advantage of~25! by using that at time
t r5n12v/kg, a(t r)5an21 and ȧ(t r)52v hold, and that
the next rest state determinesan . Inserting this into Eq.~24!
yields

1

2
v21 f n

1

an21
5 f n

1

an
~26!

or, equivalently,

1

an
2

1

an21
5

v2

2 f n
. ~27!

Comparing Eq.~27! with Eq. ~3! proves the proposition.
Note that the right-hand side of~27! is determined by the

ratio of the initial condition of thenth shake,v5ȧ(n),
which is a constant for periodic shaking, and the inverse of
the shake-dependent steepnessf n of the potentialVn(a). By
comparison with Eq.~5!, one obtains

f n5
v2

2C S 11
n

n D , ~28!

which implies that the steepness of the compaction barrier
increases linearly from shake to shake for a 1/ln(n) — com-
paction dynamics as observed in the experiment, Ref.@4#.

The potentialVn in Eq. ~24! consists of two parts: The
first term being linear ina compensates gravitational recom-
paction whereas the second term accounts for the compac-
tion barrier. The latter diverges proportionally to 1/a and
depends explicitly on the shake intensityv5ȧ(n) and the
shake numbern through the potential steepnessf n . Both
dependences are not surprising; shake intensity and shake
number influence directly the successive packing behavior of
the granular system. Therefore, the shake dependence off n
and also the inhomogeneity of the map~3! reflect the intrin-
sic compaction behavior of the shaken granular material. The
arbitrariness off n in the potentialVn(a) can also lead to
other types of compaction dynamics by choosing different
shake dependence off n . In this context, it seems to be in-
teresting if any granular system~even ultrafine powder!
shows a 1/ln(n) compaction dynamics.
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No quantitative experimental results on the dynamics of
the decompaction and recompaction process are available in
the literature yet. Therefore, the qualitative model proposed
above is speculative. Nevertheless, we think that it captures
essential features of the process. Improving the model by
taking into account collision effects of grains as well as non-
homogeneous corrections to the height dependence of the
packing fraction require a microscopic approach based on the
kinetic theory of inelastic many particle systems that is be-
yond the scope of this study.

III. DISCUSSION AND CONCLUSION

Introducing the compaction ratioa as an order parameter,
we have given reasons for the conjecture that the nonauto-
nomous map~3! might be an appropriate phenomenological
description of the stroboscopic compaction dynamics of
granular systems as studied in@3,4#. We have shown that this
map with the special nonautonomous termhn given in Eq.
~4! or, equivalently, the stroboscopic decay law~5!, leads to
the empirical result of Knightet al. @3,4# for the successive
compaction of the packing fraction. Based on Eq.~5!, we
have argued that — at least in principle — the decay behav-

ior towards maximum compaction,a50, happens on two
time scales. Finally, we have proposed a simple nonlinear
model for the dynamics from shake to shake that is based on
viscoplastic ideas and leads to the stroboscopic map~3!.

The structural simplicity of the map~3! might indicate
that it is universal in the sense that it holds for any type of
granular system~ultrafine and fine powders, granules, and
spheres as in the experiment@4#!. It remains an open ques-
tion whether all types of granular systems have the same
hn , Eq.~4!, or the same shake dependence of the compaction
barrierVn as discussed in Sec. II F implying a logarithmic
decay of the compaction ratio. We hope that our theory
stimulates experiments that check the validity of our basic
assumption, Eq.~5!, as well as detailed experimental studies
of the decompaction and recompaction process. For a recent
alternative approach to the compaction problem, we refer to
Ref. @14#.
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